The massive Thirring model connection

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1979 J. Phys. A: Math. Gen. 12131
(http://iopscience.iop.org/0305-4470/12/1/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 19:02

Please note that terms and conditions apply.

The massive Thirring model connection

Hedley C Morris
School of Mathematics, Trinity College, Dublin, Republic of Ireland

Received 3 November 1977

Abstract

The equations of the massive Thirring model are shown to have a non-trivial prolongation structure and to be related to an $\operatorname{SL}(2, R)$ connection form. From this an inverse scattering problem is determined and an infinite set of conservation laws constructed.

1. The prolongation structure

In characteristic coordinates the equations of the classical massive Thirring model (Thirring 1958, Coleman 1975) take the form

$$
\begin{align*}
& \mathrm{i} \partial_{X} \phi_{1}=m \phi_{2}+g \bar{\phi}_{2} \phi_{2} \phi_{1} \tag{1.1}\\
& \mathrm{i} \partial_{T} \phi_{2}=m \phi_{1}+g \bar{\phi}_{1} \phi_{1} \phi_{2} \tag{1.2}
\end{align*}
$$

together with their complex conjugates. These equations can be represented by the closed ideal of differential forms generated by the four two-forms $\alpha_{1}, \alpha_{2}, \bar{\alpha}_{1}, \bar{\alpha}_{2}$ defined to be

$$
\begin{align*}
& \alpha_{1}=\mathrm{d} \phi_{1} \wedge \mathrm{~d} T+\mathrm{i}\left(m \phi_{2}+g \bar{\phi}_{2} \phi_{2} \phi_{1}\right) \mathrm{d} X \wedge \mathrm{~d} T \tag{1.3}\\
& \alpha_{2}=\mathrm{d} \phi_{2} \wedge \mathrm{~d} X-\mathrm{i}\left(m \phi_{1}+g \bar{\phi}_{1} \phi_{1} \phi_{2}\right) \mathrm{d} X \wedge \mathrm{~d} T \tag{1.4}\\
& \bar{\alpha}_{1}=\mathrm{d} \bar{\phi}_{1} \wedge \mathrm{~d} T-\mathrm{i}\left(m \bar{\phi}_{2}+g \bar{\phi}_{2} \phi_{2} \bar{\phi}_{1}\right) \mathrm{d} X \wedge \mathrm{~d} T \tag{1.5}\\
& \bar{\alpha}_{2}=\mathrm{d} \bar{\phi}_{2} \wedge \mathrm{~d} X+\mathrm{i}\left(m \bar{\phi}_{1}+g \bar{\phi}_{1} \phi_{1} \bar{\phi}_{2}\right) \mathrm{d} X \wedge \mathrm{~d} T . \tag{1.6}
\end{align*}
$$

Using the techniques of Wahquist and Estabrook (1975) we can show that the one-form Ω defined by
$\Omega=\mathrm{d} \zeta+\left(X_{0}+X_{1} \phi_{2}+X_{2} \bar{\phi}_{2}+X_{3} \bar{\phi}_{2} \phi_{2}\right) \mathrm{d} X+\left(X_{4}+X_{5} \phi_{1}+X_{6} \bar{\phi}_{1}+X_{7} \bar{\phi}_{1} \phi_{1}\right) \mathrm{d} T$
is a prolongation one-form for the ideal (1.3)-(1.6) provided the generators X_{i} obey the following commutation relations:
$\left[X_{0}, X_{4}\right]=0 \quad\left[X_{0}, X_{5}\right]=\mathrm{i} m X_{1} \quad\left[X_{0}, X_{6}\right]=-\mathrm{i} m X_{2} \quad\left[X_{0}, X_{7}\right]=0$
$\left[X_{1}, X_{4}\right]=-\mathrm{i} m X_{5}\left[X_{1}, X_{5}\right]=0 \quad\left[X_{1}, X_{6}\right]=-\mathrm{i} m\left(X_{3}+X_{7}\right)\left[X_{1}, X_{7}\right]=\mathrm{i} g X_{1}$
$\left[X_{2}, X_{4}\right]=\mathrm{i} m X_{6} \quad\left[X_{2}, X_{5}\right]=\mathrm{i} m\left(X_{3}+X_{7}\right)\left[X_{2}, X_{6}\right]=0 \quad\left[X_{2}, X_{7}\right]=-\mathrm{i} g X_{2}$

$$
\left[X_{3}, X_{4}\right]=0 \quad\left[X_{3}, X_{5}\right]=-\mathrm{i} g X_{5} \quad\left[X_{3}, X_{6}\right]=\mathrm{ig} X_{6}
$$

$$
\begin{equation*}
\left[X_{3}, X_{7}\right]=0 \tag{1.11}
\end{equation*}
$$

We can simplify these relations if we make the additional ansatz that
$X_{4}=a X_{0}, \quad X_{5}=b X_{1}, \quad X_{6}=c X_{2}, \quad X_{7}=d X_{0}, \quad X_{3}=e X_{0}$,
then the relations (1.8)-(1.11) imply that

$$
\begin{align*}
& {\left[X_{0}, X_{1}\right]=\frac{\mathrm{i} m}{b} X_{1}=\frac{\mathrm{i} m b}{a} X_{1}=-\frac{\mathrm{i} g}{d} X_{1}=-\frac{\mathrm{i} g}{e} X_{1}} \tag{1.13}\\
& {\left[X_{0}, X_{2}\right]=-\frac{\mathrm{i} m}{c} X_{2}=-\frac{\mathrm{i} m c}{a} X_{2}=\frac{\mathrm{i} g}{d} X_{2}=\frac{\mathrm{ig}}{e} X_{2}} \tag{1.14}\\
& {\left[X_{1}, X_{2}\right]=-\frac{\mathrm{i} m(d+e)}{c} X_{0}=-\frac{\mathrm{i} m(d+e)}{b} X_{0}} \tag{1.15}
\end{align*}
$$

and we see that we must select a, b, c, d and e so that

$$
\begin{align*}
& \mathrm{i} m / b=\mathrm{i} m b / a=-\mathrm{i} g / d=-\mathrm{i} g / e \tag{1.16}\\
& -\mathrm{i} m / c=-\mathrm{i} m c / a=\mathrm{i} g / d=\mathrm{i} g / e \tag{1.17}\\
& -\mathrm{i} m(d+e) / c=-\mathrm{i} m(d+e) / b \tag{1.18}
\end{align*}
$$

These relations have the general solution
$a=b^{2}, \quad c=b, \quad d=e=-g b / m, \quad$ with b arbitrary.
If we define $b=\lambda^{-2}$ then the commutation relations of X_{0}, X_{1}, X_{2} take the form
$\left[X_{0}, X_{1}\right]=\mathrm{i} m \lambda^{2} X_{1} \quad\left[X_{0}, X_{2}\right]=-\mathrm{i} m \lambda^{2} X_{2} \quad\left[X_{1}, X_{2}\right]=2 \mathrm{i} g X_{0}$.
If we define Y_{0}, Y_{+1}, Y_{-1}, by the identifications
$X_{0}=\mathrm{i} m \lambda^{2} Y_{0} \quad X_{1}=(\mathrm{gm})^{1 / 2} \lambda i Y_{+1} \quad X_{2}=(\mathrm{gm})^{1 / 2} \lambda \mathrm{i} Y_{-1}$
then the algebra of the $Y_{0}, Y_{ \pm 1}$ is

$$
\begin{equation*}
\left[Y_{0}, Y_{+1}\right]=Y_{+1} \quad\left[Y_{0}, Y_{-1}\right] \quad\left[Y_{+1}, Y_{-1}\right]=+2 Y_{0} \tag{1.22}
\end{equation*}
$$

which is the algebra of $\operatorname{SL}(2, R)$. A one-dimensional representation of $\operatorname{SL}(2, R)$ is given by

$$
\begin{equation*}
Y_{0}=\zeta \partial / \partial \zeta \quad Y_{+1}=\zeta^{2} \partial / \partial \zeta \quad Y_{-1}=-\partial / \partial \zeta \tag{1.23}
\end{equation*}
$$

and yields the following representation of the generators X_{i} :

$$
\begin{array}{lll}
X_{0}=\mathrm{i} m \lambda^{2} \zeta \partial / \partial \zeta & X_{1}=\mathrm{i}(g m)^{1 / 2} \lambda \zeta^{2} \partial / \partial \zeta & X_{2}=-\mathrm{i}(g m)^{1 / 2} \lambda \partial / \partial \zeta \\
X_{3}=-\mathrm{i} g \zeta \partial / \partial \zeta & X_{4}=\mathrm{i} m \lambda^{-2} \zeta \partial / \partial \zeta & X_{5}=\mathrm{i}(g m)^{1 / 2} \lambda^{-1} \zeta \partial / \partial \zeta \\
X_{0}=-\mathrm{i}(g m)^{1 / 2} \lambda^{-1} \partial / \partial \zeta & X_{7}=-\mathrm{i} g \zeta \partial / \partial \zeta . &
\end{array}
$$

This gives the prolongation form

$$
\begin{align*}
& \Omega=\mathrm{d} \zeta+\mathrm{i}\left(m \lambda^{2} \zeta+\lambda(m g)^{1 / 2} \zeta^{2} \phi_{2}-(m g)^{1 / 2} \lambda \bar{\phi}_{2}-g \zeta \bar{\phi}_{2} \phi_{2}\right) \mathrm{d} X \tag{1.27}\\
& +\mathrm{i}\left(m \lambda^{-2} \zeta+(m g)^{1 / 2} \lambda^{-1} \zeta^{2} \phi_{1}-(m g)^{1 / 2} \lambda^{-1} \bar{\phi}_{1}-g \zeta \bar{\phi}_{1} \phi_{1}\right) \mathrm{d} T . \tag{1.28}
\end{align*}
$$

From this we see that the Cartan-Ehresman connection (Hermann 1976)

$$
\begin{equation*}
\omega=\omega_{0}+\omega_{1} \zeta+\omega_{2} \zeta^{2} \tag{1.29}
\end{equation*}
$$

where

$$
\begin{align*}
& \omega_{0}=-\mathrm{i}(m g)^{1 / 2}\left(\lambda \bar{\phi}_{2} \mathrm{~d} X+\lambda^{-1} \bar{\phi}_{1} \mathrm{~d} T\right) \tag{1.30}\\
& \omega_{1}=\mathrm{i}\left[\left(m \lambda^{2}-g \bar{\phi}_{2} \phi_{2}\right) \mathrm{d} X+\left(m \lambda^{-2}-g \bar{\phi}_{1} \phi_{1}\right) \mathrm{d} T\right] \tag{1.31}\\
& \omega_{2}=\mathrm{i}(m g)^{1 / 2}\left(\lambda \phi_{2} \mathrm{~d} X+\lambda^{-1} \phi_{1} \mathrm{~d} T\right) \tag{1.32}
\end{align*}
$$

has the property that its curvature forms

$$
\begin{align*}
& \Omega_{0}=\mathrm{d} \omega_{0}-\omega_{0} \wedge \omega_{1}=\lambda \bar{\alpha}_{2}+\lambda^{-1} \bar{\alpha}_{1} \tag{1.33}\\
& \Omega_{1}=\mathrm{d} \omega_{1}-2 \omega_{0} \wedge \omega_{2}=-\mathrm{i} g\left(\phi_{2} \bar{\alpha}_{2}+\bar{\phi}_{2} \alpha_{2}+\phi_{1} \bar{\alpha}_{1}+\bar{\phi}_{1} \alpha_{1}\right) \tag{1.34}\\
& \Omega_{2}=\mathrm{d} \omega_{2}+\omega_{2} \wedge \omega_{1}=\lambda \alpha_{2}+\lambda^{-1} \alpha_{1} \tag{1.35}
\end{align*}
$$

lie in the ring of forms generated by $\alpha_{1}, \alpha_{2}, \bar{\alpha}_{1}, \bar{\alpha}_{2}$. Thus the equations of the massive Thirring model can be associated with the vanishing of an $\operatorname{SL}(2, R)$ connection in an analogous way to the non-linear Schrödinger equation (Corones 1977, Morris 1977).

Sectioning Ω onto a solution manifold of (1.1)-(1.2) gives us a non-linear scattering problem in the Ricatti form,

$$
\begin{align*}
& \zeta_{X}=-\mathrm{i}\left[m \lambda^{2} \zeta+\lambda(m g)^{1 / 2} \zeta^{2} \phi_{2}-(m g)^{1 / 2} \lambda \bar{\phi}_{2}-g \bar{\phi}_{2} \phi_{2} \zeta\right] \tag{1.36}\\
& \zeta_{T}=-\mathrm{i}\left[m \lambda^{-2} \zeta+\lambda^{-1}(m g)^{1 / 2} \zeta^{2} \phi_{1}-(m g)^{1 / 2} \lambda^{-1} \bar{\phi}_{1}-g \bar{\phi}_{1} \phi_{1} \zeta\right] . \tag{1.37}
\end{align*}
$$

If we take a two-dimensional representation for the $Y_{0}, Y_{ \pm 1}$,

$$
\begin{equation*}
Y_{0}=\frac{1}{2}\left(\zeta^{2} \partial / \partial \zeta^{2}-\zeta^{1} \partial / \partial \zeta^{1}\right) \quad Y_{+1}=\zeta^{2} \partial / \partial \zeta^{1} \quad Y_{-1}=\zeta^{1} \partial / \partial \zeta^{2} \tag{1.38}
\end{equation*}
$$

then we obtain a linear inverse scattering problem of the form

$$
\begin{align*}
& \zeta_{X}^{1}=\frac{1}{2} \mathrm{i}\left(m \lambda^{2}-g \bar{\phi}_{2} \phi_{2}\right) \zeta^{1}-\mathrm{i}(m g)^{1 / 2} \lambda \phi_{2} \zeta^{2} \tag{1.39}\\
& \zeta_{X}^{2}=-\frac{1}{2} \mathrm{i}\left(m \lambda^{2}-g \bar{\phi}_{2} \phi_{2}\right] \zeta^{2}-\mathrm{i}(m g)^{1 / 2} \lambda \bar{\phi}_{2} \zeta^{1} \tag{1.40}\\
& \zeta_{T}^{1}=\frac{1}{2}\left(m \lambda^{-2}-g \bar{\phi}_{1} \phi_{1}\right) \zeta^{1}-\mathrm{i}(m g)^{1 / 2} \lambda^{-1} \phi_{1} \zeta^{2} \tag{1.41}\\
& \zeta_{T}^{2}=-\frac{1}{2} \mathrm{i}\left(m \lambda^{-1}-g \bar{\phi}_{1} \phi_{1}\right) \zeta^{2}-\mathrm{i}(m g)^{1 / 2} \lambda^{-1} \bar{\phi}_{1} \zeta^{1} . \tag{1.42}
\end{align*}
$$

This form has also been determined by Michaelov (1976) using different methods. The inverse scattering problem above can be solved (A C Newell 1978, private communication) and multisoliton solutions determined.

2. Conservation laws

From equations (1.36) and (1.37) one easily discoveres that

$$
\begin{equation*}
\mathrm{i}\left[\lambda\left(\phi_{2} \zeta\right)_{T}-\lambda^{-1}\left(\phi_{1} \zeta\right)_{X}\right]=(m g)^{1 / 2}\left(\phi_{1} \bar{\phi}_{2}-\bar{\phi}_{1} \phi_{2}\right) \tag{2.1}
\end{equation*}
$$

Thus if we expand ζ as a series in λ,

$$
\begin{equation*}
\zeta=\sum_{i=0}^{\infty} \lambda^{2 i+1} \zeta_{t} \tag{2.2}
\end{equation*}
$$

the quantity C_{1} defined by

$$
\begin{equation*}
C_{i}=\int \phi_{2} \zeta_{i} \mathrm{~d} X \tag{2.3}
\end{equation*}
$$

is conserved for all i.
The first two coefficients in the series for ζ are

$$
\begin{equation*}
\zeta_{0}=(g / m)^{1 / 2} \bar{\phi}_{1} \quad \zeta_{1}=m^{-1}(g / m)^{1 / 2}\left(\mathrm{i} \bar{\phi}_{1 T}+g \bar{\phi}_{1} \phi_{1} \bar{\phi}_{1}\right) \tag{2.4}
\end{equation*}
$$

with the corresponding conserved quantities

$$
C_{0}=\int(g / m)^{1 / 2} \phi_{2} \bar{\phi}_{1} \mathrm{~d} X
$$

and

$$
\begin{equation*}
C_{1}=\int m^{-1}(g / m)^{1 / 2} \phi_{2}\left(\mathrm{i} \bar{\phi}_{1 T}+g \bar{\phi}_{1} \phi_{1} \bar{\phi}_{1}\right) \mathrm{d} X \tag{2.5}
\end{equation*}
$$

The above result is more concisely expressed if we note that the potential one-form ω defined by,

$$
\begin{equation*}
\omega=\left(\lambda \phi_{2} \mathrm{~d} X+\lambda^{-1} \phi_{1} \mathrm{~d} T\right) \zeta-(g / m)^{1 / 2} \bar{\phi}_{1} \phi_{1} \mathrm{~d} T=\sum_{i=0}^{\infty} \lambda^{2 t+1} \omega_{i} \tag{2.6}
\end{equation*}
$$

can easily be shown to provide a prolongation of the ideal (1.3)--(1.6) prolonged by the one-forms Ω and $\bar{\Omega}$. Thus we must have

$$
\begin{equation*}
\int_{C} \omega_{2}=0 \tag{2.7}
\end{equation*}
$$

where C is any curve lying in the solution manifold of the Thirring equations (1.1)-(1.2). Equations (2.6) and (2.7) should also be compared with the analogous expressions for the anticommuting Thirring model (Morris 1978).

References

Coleman S 1975 Phys. Rev. D 112088
Corones J 1977 J. Math. Phys. 18163
Hermann R 1976 Phys. Rev. Lett 36835
Michaelov A 1976 Zh. Eskp. Teor. Phys. Pis. Red. 26356
Morris H C 1977 J. Math. Phys. 18533

- 1978 J. Math. Phys. 19

Thirring W 1958 Ann. Phys., NY 391
Wahlquist H and Estabrook F 1975 J. Math. Phys. 161

